Abstract

Due to the unknown system structure of the froth flotation process and frequent fluctuations in production conditions, design of control strategy is a challenging problem. As a result, manual operation is still widely applied in practice by observing froth image features. However, since the manual observation is subjective and the production conditions are time-varying, the manual operation cannot make decisions quickly and accurately. In this paper, a data-driven-based adaptive fuzzy neural network control strategy is developed to implement the automatic control of the antimony flotation process. The strategy is composed of fuzzy neural network (FNN) controllers, a data-driven model, and an on-line adaptive algorithm. The FNN is constructed to derive the control laws of the reagent dosages. The parameters of the FNN controllers are tuned by gradient descent algorithm. To obtain the real-time error feedback information, the data-driven model is established, which integrates the long short term memory (LSTM) network and radial basis function neural network (RBFNN). The LSTM network is utilized as a primary model, and the RBFNN is used as an error compensation model. To handle the challenges of the frequent fluctuations in the production conditions, the on-line adaptive algorithm is proposed to tune the parameters of the FNN controllers. Simulations and experiments are carried out in a real-world antimony flotation plant in China. The results demonstrate that the proposed adaptive fuzzy neural network control strategy produces better control performance than the other two existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.