Abstract

An autoencoder based neural network architecture, CD-Net, is proposed to predict Lithium-ion battery capacity degradation as a function of operation time as part of a battery management system. CD-Net's generalization performance on various LIB cell chemistry is tested. The incorporation of cell chemistry in CD-Net leads to an improvement in the overall battery capacity prediction accuracy of >2 % for LiNiMnCoO2 cells, >5 % for LiNiCoAlO2 cells, and >12 % for LiFePO4 cells when compared to the similar ML models that do not incorporate cell chemistry information. A comparison of onboard battery health prediction using CD-Net against support vector regression, Bayesian regression, and Gaussian process regression-based approaches shows that CD-Net has higher computational efficiency with <2 % of relative remaining useful life (RUL) prediction error in a no-cell chemistry information setting. In summary, our work presents a chemistry-independent neural network model tailored specifically for onboard BMS applications, showcasing notable predictive capabilities in the context of Lithium-ion battery health assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call