Abstract

We propose three procedures based on association rules (AR) learning and random forests (RF) to support the specification of a portfolio choice model applied in data from complex choice experiment data, specifically a Participatory Value Evaluation (PVE) choice experiment. In a PVE choice experiment, respondents choose a combination of alternatives, subject to a resource constraint. We combine a methodological-iterative (MI) procedure with AR learning and RF models to support the specification of parameters of a portfolio choice model. Additionally, we use RF model predictions to contrast the validity of the behavioural assumptions of different specifications of the portfolio choice model. We use data of a PVE choice experiment conducted to elicit the preferences of Dutch citizens for lifting COVID-19 measures. Our results show model fit and interpretation improvements in the portfolio choice model, compared with conventional model specifications. Additionally, we provide guidelines on the use of outcomes from AR learning and RF models from a choice modelling perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.