Abstract
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total π-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.