Abstract

Battery systems are increasingly being used for powering ocean going ships, and the number of fully electric or hybrid ships relying on battery power for propulsion and maneuvering is growing. In order to ensure the safety of such electric ships, it is important to monitor the available energy that can be stored in the batteries, and classification societies typically require that the state of health (SOH) can be verified by independent tests. However, this paper addresses data-driven approaches to state of health monitoring of maritime battery systems based on operational sensor data. Results from various approaches to sensor-based, data-driven degradation monitoring of maritime battery systems will be presented, and advantages and challenges with the different methods will be discussed. The different approaches include cumulative degradation models and snapshot models. Some of the models need to be trained, whereas others need no prior training. Moreover, some of the methods only rely on measured data, such as current, voltage and temperature, whereas others rely on derived quantities such as state of charge (SOC). Models include simple statistical models and more complicated machine learning techniques. Different datasets have been used in order to explore the various methods, including public datasets, data from laboratory tests and operational data from ships in actual operation. Lessons learned from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.