Abstract
Solid oxide fuel cell system is widely acknowledged as the leading alternative energy generation system in the field. Due to their high efficiency, low emissions, low noise, and various other advantages, solid oxide fuel cell systems are being considered for use in automobiles as a replacement for traditional internal combustion engines. However, prolonged operation and abnormal shutdowns can lead to performance degradation, which affects the efficiency, stability, and lifespan of stack. In the context of prolonged operation, considering the fluctuations in stack performance parameters and balance of plant, several regression models based on voltage parameters are established to accurately predict changes in stack performance. The results reveal that the genetic algorithm optimized backpropagation neural network model is highly sensitive in predicting the system performance degradation. Further analysis reveals that abnormal shutdowns can cause system performance fluctuations. As a result, the number and duration of shutdowns are incorporated into genetic algorithm optimized backpropagation neural network model for analysis. This model exhibits the best performance degradation evolution prediction compared to the long short-term memory and particle swarm optimization backpropagation neural network methods. This finding is important for monitoring and controlling the operational status of stack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.