Abstract

To facilitate the ongoing transition to fourth-generation district heating systems, it is necessary to find resource-efficient methods to model the differential pressure in a district heating network accurately. This paper has developed, tested, and compared data-driven methods to create a soft sensor for a pressure transmitter in the district heating network. The sensor is used to control the district heating load and therefore, is the most critical spot of the sensor network. The data-based modelling approaches chosen were transfer functions and neural networks. The data set was collected from Hafslund Oslo Celsio’s historical database for January–March 2021, when the heating demand is highest. The best convolutional neural network and a first-order transfer function give acceptable results in estimating the pressure transmitter signal. Both models have the simplest architectures within their model type, suggesting that the need for complex models in either approach is redundant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.