Abstract
Abstract The computational prediction of wave propagation in dam-break floods is a long-standing problem in hydrodynamics and hydrology. We show that a reservoir computing echo state network (RC-ESN) that is well-trained on a minimal amount of data can accurately predict the long-term dynamic behavior of a one-dimensional dam-break flood. We solve the de Saint-Venant equations for a one-dimensional dam-break flood scenario using the Lax–Wendroff numerical scheme and train the RC-ESN model. The results demonstrate that the RC-ESN model has good prediction ability, as it predicts wave propagation behavior 286 time-steps ahead with a root mean square error smaller than 0.01, outperforming the conventional long short-term memory (LSTM) model, which only predicts 81 time-steps ahead. We also provide a sensitivity analysis of prediction accuracy for RC-ESN's key parameters such as training set size, reservoir size, and spectral radius. Results indicate that the RC-ESN is less dependent on training set size, with a medium reservoir size of 1,200–2,600 sufficient. We confirm that the spectral radius has a complex influence on the prediction accuracy and currently recommend a smaller spectral radius. Even when the initial flow depth of the dam break is changed, the prediction horizon of RC-ESN remains greater than that of LSTM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.