Abstract
In this paper, the future prediction of predicted mean vote (PMV) index of indoor environment is studied. PMV is the evaluation index used in this paper to represent the thermal comfort of human body. According to the literature, the main environmental factors affecting PMV index are temperature, humidity, black globe temperature, wind speed, average radiation temperature, and clothing surface temperature, and there is a complex nonlinear relationship between the six variables. Due to the coupling relationship between the six parameters, the PMV formula can be simplified under specific conditions, reducing the monitoring of variables that are difficult to observe. Then, the improved grey system prediction model GM(1,1) with optimized selection dimension is used to predict the future time of PMV. Due to the irregularity, uncertainty and fluctuation of PMV values in time series, based on the original GM(1,1) time series prediction, an adaptive GM(1,1) improved model is proposed, which can continuously change with time series and enhance its prediction accuracy. By contrast, the improved GM(1,1) model can be derived from the sliding window of the adaptive model through changes in the dataset and get better model grades. It lays a foundation for the future research on the predicted index of PMV, so as to set and control the air conditioning system in advance, to meet the intelligence of modern intelligent home and humanized function of sensing human comfort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.