Abstract
Floating offshore wind turbines have increased in popularity owing to their adaptability for deep-water applications and high power generation efficiency. The control of floating offshore wind turbines, on the other hand, is very complex. The main challenges are the difficulty in precisely modelling floating offshore wind turbines and the higher failure rate of components. As a consequence, this study proposes a model-free adaptive fault-tolerant control system for blade root moment sensor failures. A model-free adaptive control approach is used to construct an individual pitch controller and a fault compensation to avoid mathematical modelling of floating offshore wind turbines. The proposed fault-tolerant control technique removes the need for fault detection and isolation by converting the fault dynamic compensation process into a real-time control issue for nonlinear systems. The fatigue, aerodynamics, structures, and turbulence code simulates and tests the proposed control strategy, and the results show that the proposed strategy can not only keep the wheel bearing load balanced but also reduce the movement of the floating platform and significantly reduce the bearing load of the floating offshore wind turbines. Furthermore, the output power is closer to the rated power, proving the strategy’s high fault tolerance in the face of repeated blade root moment sensor faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.