Abstract
We present a method for accelerating discrete ordinates radiative transfer calculations for radiative transfer. Our method works with nonlinear positivity fixes, in contrast to most acceleration schemes. The method is based on the dynamic mode decomposition (DMD) and using a sequence of rank-one updates to compute the singular value decomposition needed for DMD. Using a sequential method allows us to automatically determine the number of solution vectors to include in the DMD acceleration. We present results for slab geometry discrete ordinates calculations with the standard temperature linearization. Compared with positive source iteration, our results demonstrate that our acceleration method reduces the number of transport sweeps required to solve the problem by a factor of about 3 on a standard diffusive Marshak wave problem, a factor of several thousand on a cooling problem where the effective scattering ratio approaches unity, and a factor of 20 improvement in a realistic, multimaterial radiating shock problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.