Abstract

We introduce a novel approach for the construction of symbolic abstractions -simpler, finite-state models -which mimic the behaviour of a system of interest, and are commonly utilized to verify complex logic specifications. Such abstractions require an exhaustive knowledge of the concrete model, which can be difficult to obtain in real-world applications. To overcome this, we propose to sample finite length trajectories of an unknown system and build an abstraction based on the concept of ℓ-completeness. To this end, we introduce the notion of probabilistic behavioural inclusion. We provide probably approximately correct (PAC) guarantees that such an abstraction, constructed from experimental symbolic trajectories of finite length, includes all behaviours of the concrete system, for both finite and infinite time horizon. Finally, our method is displayed with numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.