Abstract
In the realm of Zero-Shot Learning (ZSL), we address biases in Generalized Zero-Shot Learning (GZSL) models, which favor seen data. To counter this, we introduce an end-to-end generative GZSL framework called D3GZSL. This framework respects seen and synthesized unseen data as in-distribution and out-of-distribution data, respectively, for a more balanced model. D3GZSL comprises two core modules: in-distribution dual space distillation (ID2SD) and out-of-distribution batch distillation (O2DBD). ID2SD aligns teacher-student outcomes in embedding and label spaces, enhancing learning coherence. O2DBD introduces low-dimensional out-of-distribution representations per batch sample, capturing shared structures between seen and un seen categories. Our approach demonstrates its effectiveness across established GZSL benchmarks, seamlessly integrating into mainstream generative frameworks. Extensive experiments consistently showcase that D3GZSL elevates the performance of existing generative GZSL methods, under scoring its potential to refine zero-shot learning practices. The code is available at: https://github.com/PJBQ/D3GZSL.git
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.