Abstract

With the ongoing changes in global climate, ocean data play a crucial role in understanding the complex variations in the earth system. These variations pose significant challenges to human efforts in addressing the changes. As a data hub for the satellite geodetic technique, unmanned aerial vehicles (UAVs) instill new vitality into ocean data collection due to their flexibility and mobility. At the same time, the dual-functional radar-communication (DFRC) system is considered a promising technology to empower ubiquitous communication and high-accuracy localization. In this paper, we explore a new fusion of UAV and DFRC to assist data acquisition in the ocean surveillance scenario. The floating buoys transmit uplink data transmission to the UAV with non-orthogonal multiple access (NOMA) and attempt to localize the target cooperatively. With the mobility of the UAV and power control at the buoys, the system throughput and the target localization performance can be improved simultaneously. To balance the communication and sensing performance, a two-objective optimization problem is formulated by jointly optimizing the UAV’s location and buoy’s transmit power to maximize the system throughput and minimize the attainable localization mean-square error. We propose a joint communication and radar-sensing many-objective optimization (CRMOP) algorithm to meliorate the communication and radar-sensing performance simultaneously. Simulation results demonstrate that compared with the baseline, the proposed algorithm achieves superior performance in balancing the system throughput and target localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call