Abstract

Understanding protein functions requires not only static but also dynamic structural information. Incoherent quasi-elastic neutron scattering (QENS), which utilizes the highly incoherent scattering ability of hydrogen, is a powerful technique for revealing the dynamics of proteins in deuterium oxide (D2O) buffer solutions. The background scattering of sample cells suitable for aqueous protein solution samples, conducted with a neutron backscattering spectrometer, was evaluated. It was found that the scattering intensity of an aluminum sample cell coated with boehmite using D2O was lower than that of a sample cell coated with regular water (H2O). The D2O-Boehmite coated cell was used for the QENS measurement of a 0.8 wt.% aqueous solution of an intrinsically disordered protein in an intrinsically disordered region of a helicase-associated endonuclease for a fork-structured type of DNA. The cell was inert against aqueous samples at 283–363 K. In addition, meticulous attention to cells with small individual weight differences and the positional reproducibility of the sample cell relative to the spectrometer neutron beam position enabled the accurate subtraction of the scattering profiles of the D2O buffer and the sample container. Consequently, high-quality information on protein dynamics could be extracted from dilute protein solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call