Abstract

In the shipbuilding industry, welding automation using welding robots often relies on arc-sensing techniques due to spatial limitations. However, the reliability of the feedback current value, core sensing data, is reduced when welding target workpieces have significant curvature or gaps between curved workpieces due to the control of short-circuit transition, leading to seam tracking failure and subsequent damage to the workpieces. To address these problems, this study proposes a new algorithm, MBSC (median-based spatial clustering), based on the DBSCAN (density-based spatial clustering of applications with noise) clustering algorithm. By performing clustering based on the median value of data in each weaving area and considering the characteristics of the feedback current data, the proposed technique utilizes detected outliers to enhance seam tracking accuracy and responsiveness in unstructured and challenging welding environments. The effectiveness of the proposed technique was verified through actual welding experiments in a yard environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call