Abstract
Deep learning is a subfield of machine learning which uses artificial neural networks that is inspired by the structure and function of the human brain. Despite being a very new approach, it has become very popular recently. Deep learning has achieved much higher success in many applications where machine learning has been successful at certain rates. In particular It is preferred in the classification of big data sets because it can provide fast and efficient results. In this study, we used Tensorflow, one of the most popular deep learning libraries to classify MNIST dataset, which is frequently used in data analysis studies. Using Tensorflow, which is an open source artificial intelligence library developed by Google, we have studied and compared the effects of multiple activation functions on classification results. The functions used are Rectified Linear Unit (ReLu), Hyperbolic Tangent (tanH), Exponential Linear Unit (eLu), sigmoid, softplus and softsign. In this Study, Convolutional Neural Network (CNN) and SoftMax classifier are used as deep learning artificial neural network. The results show that the most accurate classification rate is obtained using the ReLu activation function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.