Abstract

In this paper we have performed dynamic clustering based on classification. The Enhance Neuro-fuzzy system for classification using dynamic clustering presented in this paper is an extension of the original Neuro-fuzzy method for linguistic feature selection and rule-based classification. In the dynamic clustering process, the parameter values like centroid, threshold value and standard deviation are estimated. This parameter is used for creating the cluster. The Gaussian membership function is applied to these clusters to generate the binary value of each feature to given cluster. Using this method we have got the large number of cluster and minimum accuracy. To reduce the cluster size and to improve the accuracy we have implement the homogenous clustering process. Using this process we have minimize the cluster size, and also improve the accuracy. General Terms Fuzzy logic, Artificial intelligence, Neural Network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.