Abstract
Traditional malware detection and analysis approaches have been focusing on code-centric aspects of malicious programs, such as detection of the injection of malicious code or matching malicious code sequences. However, modern malware has been employing advanced strategies, such as reusing legitimate code or obfuscating malware code to circumvent the detection. As a new perspective to complement code-centric approaches, we propose a data-centric OS kernel malware characterization architecture that detects and characterizes malware attacks based on the properties of data objects manipulated during the attacks. This framework consists of two system components with novel features: First, a runtime kernel object mapping system which has an un-tampered view of kernel data objects resistant to manipulation by malware. This view is effective at detecting a class of malware that hides dynamic data objects. Second, this framework consists of a new kernel malware detection approach that generates malware signatures based on the data access patterns specific to malware attacks. This approach has an extended coverage that detects not only the malware with the signatures, but also the malware variants that share the attack patterns by modeling the low level data access behaviors as signatures. Our experiments against a variety of real-world kernel rootkits demonstrate the effectiveness of data-centric malware signatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Forensics and Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.