Abstract
This paper analyzes the problem of meaningless outliers in traffic detective data sets and researches characteristics about the data of monophyletic detector and multisensor detector based on real-time data on highway. Based on analysis of the current random forests algorithm, which is a learning algorithm of high accuracy and fast speed, new optimum random forests about filtrating outlier in the sample are proposed, which employ bagging strategy combined with boosting strategy. Random forests of different number of trees are applied to analyze status classification of meaningless outliers in traffic detective data sets, respectively, based on traffic flow, spot mean speed, and roadway occupancy rate of traffic parameters. The results show that optimum model of random forest is more accurate to filtrate meaningless outliers in traffic detective data collected from road intersections. With filtrated data for processing, transportation information system can decrease the influence of error data to improve highway traffic information services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.