Abstract

AbstractThe viscoelastic behavior of short fiber reinforced polymers (SFRPs) partly depends on different microstructural parameters such as the local fiber orientation distribution. To account for this by simulation on component level, two‐scale methods couple simulations on the micro‐ and macroscale, which involve considerable computational costs. To circumvent this problem, the generation of a viscoelastic surrogate model is presented here. For that purpose, an adaptive sampling technique is investigated and data are obtained by creep simulations of representative volume elements (RVEs) using a fast Fourier transform (FFT) based homogenization method. Numerical tests confirm the high accuracy of the surrogate model. The possibility of using that model for efficient material optimization is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.