Abstract
Abstract This paper introduces the profile likelihood method in order to assess simultaneously the parameter identifiability and the state observability for nonlinear dynamic state-space models with constant parameters. While a formal definition of a parameter’s identifiability has been used before, the novel idea is to investigate also the state’s observability by the identifiability of its initial value. Using the profile likelihood, both qualitative as well as quantitative statements are drawn from the analysis based on the nonlinear model and (possibly noisy) sensor data. A simplified wind turbine model is presented and used as an application example for the profile likelihood approach in order to investigate the model’s usability for state and parameter estimation. It is shown that the critical model parameters and initial states are identifiable in principle. The analysis with more complex models and realistic data reveals the limitations when assumptions are deliberately violated in order to meet reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.