Abstract
The International Classification of Diseases (ICD) is fundamental in the field of healthcare as it provides a standardized framework for the classification and coding of medical diagnoses and procedures, enabling the understanding of international public health patterns and trends. However, manually classifying medical reports according to this standard is a slow, tedious and error-prone process, which shows the need for automated systems to offload the healthcare professional of this task and to reduce the number of errors. In this paper, we propose an automated classification system based on Natural Language Processing to analyze radiological reports and classify them according to the ICD-10. Since the specialized use of the language of radiological reports and the usual unbalanced distribution of medical report sets, we propose a methodology grounded in leveraging large language models for augmenting the data of unrepresented classes and adapting the classification language models to the specific use of the language of radiological reports. The results show that the proposed methodology enhances the classification performance on the CARES corpus of radiological reports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.