Abstract

ABSTRACT Data scarcity and unavailability of observed rainfalls in the northeastern states of India limit prediction of extreme hydro-climatological changes. To fill this gap, a data assimilation approach has been applied to re-construct accurate high-resolution gridded (5 km2) daily rainfall data (2001–2020), which include seasonality assessment, statistical evaluation, and bias correction. Random forest (RF) and support vector regression were used to predict rainfall time series, and a comparison between machine learning and data assimilation-based gridded rainfall data was performed. Five gridded rainfall datasets, namely, Indian Monsoon Data Assimilation and Analysis (IMDAA) (12 km2), APHRODITE (25 km2), India Meteorological Department (25 km2), PRINCETON (25 km2), and CHIRPS (25 and 5 km2), have been utilized. For re-constructed rainfall datasets (5 km2), the comparative seasonality and change assessment have been performed with respect to other rainfall datasets. CHIRPS and APHRODITE datasets have shown better similarities with IMDAA. The RF and assimilated rainfall (AR) have superiority based on bias and extremity, and AR data were recognized as the best accurate data (>0.8). Precipitation change analysis (2021–2100) performed utilizing the bias corrected and downscaled CMIP6 datasets showed that the dry spells will be enhanced. Considering the CMIP6 moderate emission scenario, i.e., SSP245, the wet spell will be enhanced in future; however, when considering SSP585 (representing the extreme worst case), the wet spells will be decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.