Abstract

AbstractThe properties and capabilities of the Gaussian Mixture Model–Dynamically Orthogonal filter (GMM-DO) are assessed and exemplified by applications to two dynamical systems: 1) the double well diffusion and 2) sudden expansion flows; both of which admit far-from-Gaussian statistics. The former test case, or twin experiment, validates the use of the Expectation-Maximization (EM) algorithm and Bayesian Information Criterion with GMMs in a filtering context; the latter further exemplifies its ability to efficiently handle state vectors of nontrivial dimensionality and dynamics with jets and eddies. For each test case, qualitative and quantitative comparisons are made with contemporary filters. The sensitivity to input parameters is illustrated and discussed. Properties of the filter are examined and its estimates are described, including the equation-based and adaptive prediction of the probability densities; the evolution of the mean field, stochastic subspace modes, and stochastic coefficients; the fitting of GMMs; and the efficient and analytical Bayesian updates at assimilation times and the corresponding data impacts. The advantages of respecting nonlinear dynamics and preserving non-Gaussian statistics are brought to light. For realistic test cases admitting complex distributions and with sparse or noisy measurements, the GMM-DO filter is shown to fundamentally improve the filtering skill, outperforming simpler schemes invoking the Gaussian parametric distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.