Abstract
Data assimilation in the context of puff based dispersion models is studied. A representative two dimensional Gaussian puff atmospheric dispersion model is used for the purpose of testing and comparing several data assimilation techniques. A continuous nonlinear observation model, and a quantized probabilistic nonlinear observation model, are used to simulate the measurements. The quantized model is used to simulate bar sensor readings of the concentration. Dispersion models usually lead to high dimensional space-gridded state space models. In the case of puff based dispersion models, this may be avoided by using puff parameters themselves as the states, but at the cost of introducing nonlinearity and variable dimensionality. The potential of sampling based techniques is discussed in this context, with a particular focus on the particle filter approach, for which variable state dimensionality creates no difficulties. The performance of particle filter is compared with that of the extended Kalman filter, and its advantages and limitations are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.