Abstract
We study prediction-assimilation systems, which have become routine in meteorology and oceanography and are rapidly spreading to other areas of the geosciences and of continuum physics. The long-term, nonlinear stability of such a system leads to the uniqueness of its sequentially estimated solutions and is required for the convergence of these solutions to the system’s true, chaotic evolution. The key ideas of our approach are illustrated for a linearized Lorenz system. Stability of two nonlinear prediction-assimilation systems from dynamic meteorology is studied next via the complete spectrum of their Lyapunov exponents; these two systems are governed by a large set of ordinary and of partial differential equations, respectively. The degree of data-induced stabilization is crucial for the performance of such a system. This degree, in turn, depends on two key ingredients: (i) the observational network, either fixed or data-adaptive, and (ii) the assimilation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.