Abstract
Effective memory hierarchy utilization is critical to the performance of modern multiprocessor architectures. We have developed the first compiler system that fully automatically parallelizes sequential programs and changes the original array layouts to improve memory system performance. Our optimization algorithm consists of two steps. The first step chooses the parallelization and computation assignment such that synchronization and data sharing are minimized. The second step then restructures the layout of the data in the shared address space with an algorithm that is based on a new data transformation framework. We ran our compiler on a set of application programs and measured their performance on the Stanford DASH multiprocessor. Our results show that the compiler can effectively optimize parallelism in conjunction with memory subsystem performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.