Abstract

Manufacturability of active pharmaceutical ingredients (APIs) is often evaluated by an empirical approach during development due to limited material availability. This brings challenges in designing flexible yet robust manufacturing processes under highly accelerated timelines. Hence, good utilisation of a limited material dataset is key to accelerate the delivery of high quality final drug product into the market at minimum cost and maximum process capacity. In this study, we present a data-driven method to investigate a raw materials database where the integration of multivariate analysis and machine learning modelling aids the selection of new incoming materials based on their manufacturability. The procedure was applied to an industrial representative database of thirty-four APIs and seven excipients where eight measurements relevant to flow properties for each of those forty-one materials were collected. The models identified four clusters of materials with different flow properties. These models can serve as a risk assessment tool for new API in early product development phases based on the nearest surrogate material which behave similarly, as well as to identify targeted and material sparring experiments to address key risks during secondary process selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.