Abstract

Objectives: Using predictive modeling techniques, we developed and compared appointment no-show prediction models to better understand appointment adherence in underserved populations. Methods and Materials: We collected electronic health record (EHR) data and appointment data including patient, provider and clinical visit characteristics over a 3-year period. All patient data came from an urban system of community health centers (CHCs) with 10 facilities. We sought to identify critical variables through logistic regression, artificial neural network, and naïve Bayes classifier models to predict missed appointments. We used 10-fold cross-validation to assess the models’ ability to identify patients missing their appointments. Results: Following data preprocessing and cleaning, the final dataset included 73811 unique appointments with 12,392 missed appointments. Predictors of missed appointments versus attended appointments included lead time (time between scheduling and the appointment), patient prior missed appointments, cell phone ownership, tobacco use and the number of days since last appointment. Models had a relatively high area under the curve for all 3 models (e.g., 0.86 for naïve Bayes classifier). Discussion: Patient appointment adherence varies across clinics within a healthcare system. Data analytics results demonstrate the value of existing clinical and operational data to address important operational and management issues. Conclusion: EHR data including patient and scheduling information predicted the missed appointments of underserved populations in urban CHCs. Our application of predictive modeling techniques helped prioritize the design and implementation of interventions that may improve efficiency in community health centers for more timely access to care. CHCs would benefit from investing in the technical resources needed to make these data readily available as a means to inform important operational and policy questions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.