Abstract

Mental health is an important basic condition for college students to become adults. Educators gradually attach importance to strengthening the mental health education of college students. This paper makes a detailed analysis and research on college students’ mental health, expounds the development and application of clustering analysis algorithm, applies the distance formula and clustering criterion function commonly used in clustering analysis, and makes a specific description of some classic algorithms of clustering analysis. Based on expounding the advantages and disadvantages of fast-clustering analysis algorithm and hierarchical clustering analysis algorithm, this paper introduces the concept of the two-step clustering algorithm, discusses the algorithm flow of clustering model in detail, and gives the algorithm flow chart. The main work of this paper is to analyze the clustering algorithm of students’ mental health database formed by mental health assessment tool test, establish a data mining model, mine the database, analyze the state characteristics of different college students’ mental health, and provide corresponding solutions. In order to meet the needs of the psychological management system based on the clustering analysis method, the clustering analysis algorithm is used to cluster the data. Based on the original database, this paper establishes the methods of selecting, cleaning, and transforming the data of students’ psychological archives. Finally, it expounds on the application of data mining in students’ psychological management system and summarizes and prospects the implementation of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.