Abstract
Energy efficiency and thermal comfort levels are key attributes to be considered in the design and implementation of a Heating, Ventilation and Air Conditioning (HVAC) system. With the increased availability of Internet of Things (IoT) devices, it is now possible to continuously monitor multiple variables that influence a user’s thermal comfort and the system’s energy efficiency, thus acting preemptively to optimize these factors. To this end, this paper reports on a case study with a two-fold aim; first, to analyze the performance of a conventional HVAC system through data analytics; secondly, to explore the use of interpretable machine learning techniques for HVAC predictive control. A new Interpretable Machine Learning (IML) algorithm called Permutation Feature-based Frequency Response Analysis (PF-FRA) is also proposed. Results demonstrate that the proposed model can generate accurate forecasts of Room Temperature (RT) levels by taking into account historical RT information, as well as additional environmental and time-series features. Our proposed model achieves 0.4017 °C and 0.9417 °C of Mean Absolute Error (MAE) for 1-h and 8-h ahead RT prediction, respectively. Tools such as surrogate models and Shapley graphs are employed to interpret the model’s global and local behaviors with the aim of increasing trust in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.