Abstract

The technology of space-time coded continuous phase modulation (STC-CPM) has aroused considerable attention recently in wireless communication systems for improving the capacity and data rate without bandwidth expansion. Symbol timing synchronization is an important issue in such systems. In this paper, a data aided symbol timing estimation algorithm was proposed for burst-mode STC-CPM systems over Rayleigh fading channels. A training sequence is embedded before transmission of each packet. The receiver first adds the signals from different receive antennas and then calculates the digital Fourier transformation (DFT) of the phase of the one-symbol differential signal of the sum. The initial symbol timing offset can be estimated from the phase of the tone component of the DFT outputs. MATLAB simulation results show that the variance of the timing estimation error is very small in slow Rayleigh flat fading channels and frequency selective fading channels and the degradation of frame error rate (FER) is significantly small under the condition of non-ideal synchronization. This algorithm is suitable for any numbers of transmit and receive antennas and can estimate the timing offset rapidly and accurately in STC-CPM systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.