Abstract

The recently developed orthogonal time frequency space (OTFS) modulation has shown its capability of coping with the fast time-varying channels in high-mobility environments. In particular, OTFS modulation gives rise to the sparse representation of the delay-Doppler (DD) domain channel model. Hence, one can an enjoy accurate channel estimation by adopting only one pilot symbol. However, conventional OTFS channel estimation schemes require the deployment of guard space to avoid data-pilot interference, which inevitably sacrifices the spectral efficiency. In this letter, we develop a data-aided channel estimation algorithm for a superimposed pilot and data transmission scheme, which can improve the spectral efficiency. To accurately estimate the channel and detect the data symbols, we coarsely estimate the channel based on the pilot symbol, followed by an iterative process which detects the data symbols and refines the channel estimates. Simulation results show that the bit error rate (BER) performance based on the proposed method can approach the baseline scheme with perfect channel estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.