Abstract
Cooperative Intelligent Transportation Systems have achieved a mature technology stage and are in an early phase of mass deployment in Europe. Relying on Vehicle-to-X communication, these systems were primarily developed to improve traffic safety, efficiency, and driving comfort. However, they also offer great opportunities for other use cases. One of them is forensic accident analysis, where the received data provide details about the status of other traffic participants, give insights into the accident scenario, and therefore help in understanding accident causes. A high accuracy of the sent information is essential: For safety use cases, such as traffic jam warning, a poor accuracy of the data may result in wrong driver information, undermine the usability of the system and even create new safety risks. For accident analysis, a low accuracy may prevent the correct reconstruction of an accident. This paper presents an experimental study of the first generation of Cooperative Intelligent Transportation Systems in Europe. The results indicate a high accuracy for most of the data fields in the Vehicle-to-X messages, namely speed, acceleration, heading and yaw rate information, which meet the accuracy requirements for safety use cases and accident analysis. In contrast, the position data, which are also carried in the messages, have larger errors. Specifically, we observed that the lateral position still has an acceptable accuracy. The error of the longitudinal position is larger and may compromise safety use cases with high accuracy requirements. Even with limited accuracy, the data provide a high value for the accident analysis. Since we also found that the accuracy of the data increases for newer vehicle models, we presume that Vehicle-to-X data have the potential for exact accident reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.