Abstract
Carsharing scale has been increasing rapidly with sharing economy. However, many users are reluctant to rent cars any longer due to the low-quality of interactive experience and usability, especially in terms of the dashboard design. This challenge should be urgently addressed in order to maintain the sustainable development of car-sharing industry and its environmental benefits. This study aims to investigate the relationship between users' driving activities (e.g., searching time, reading time, eye movement, heart rate) and dashboard layout. This study was conducted based on the experimental investigation among 58 respondents who were required to complete driving tasks in four types of cars with different dashboard layouts. Afterwards, a prediction model was developed to predict users heart rate (HR) based on the long short-term memory model, and logistic models were used to examine the relationship between the occurrence probability of minimum HR and dashboard reading. The results showed that the system usability of a dashboard was related to the drivers' eye movement characteristics including fixation duration, fixation times and pupil diameter. Most indicators had significant effects (p < 0.05) on the system usability score of corresponding dashboard. The long short-term memory model network (RMSE = 1.105, MAE = 0.009) was capable of predicting heart rate (HR) that happened in the process of instrument reading, which presented a periodic pattern rather than a continuous increase or decrease. It reflected that the network could better fit the non-linear and time-sequential laws of HR data. Furthermore, the probability of the lowest heart rate occurrence during the interaction with four dashboards was influenced by the average searching time, reading time and reading accuracy that were related to a specific layout. Overall, this study provided a theoretical reference for uncovering users' adaptive behaviors with the central control screen and for the optimal choice of a suitable dashboard layout in interface design.
Highlights
Sharing economy has promoted automobile industry development, along with which car-sharing scale has been expanding dramatically
Afterwards, this study develops the prediction models of heart rates of drivers based both the long short-term memory model (LSTM) and logistic model in order to reveal the relationship between user heart rate and reading efficiency
In addition to task completion time and system usability, the change of drivers’ mental stress was an important indicator to further reflect the user experience brought by different dashboard layouts
Summary
Sharing economy has promoted automobile industry development, along with which car-sharing scale has been expanding dramatically. When the user accesses to the car, it is necessary to judge whether the car is consistent with that displayed on the ordering APP interface and whether there are damaged or missing parts These early cognitive activities would enhance users’ sense of tension and fatigue, which is different from private cars that can be driven directly. It indicates that carsharing needs to be compensated in terms of drivers’ cognition to make the industry obtain more acceptance For both business to customer car sharing or time-sharing car rental, human machine interface (HMI) features exclusive to an individual automobile brand are not suited for car sharing and will cut down the flexibility of users when interacting with the cars [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.