Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide. Combination of drugs targeting independent signaling pathways would effectively block the proliferation of cancer cells with lower concentrations and stronger synergy effects. Dasatinib, a multi-targeted protein tyrosine kinase inhibitor targeting BCR-ABL and kinases of SRC family, has been successfully applied in the treatment of chronic myeloid leukemia (CML). BMS-754807, an inhibitor targeting the insulin-like growth factor 1 receptor (IGF-IR) and insulin receptor (IR) family kinases, has been in phase I development for the treatment of a variety of human cancers. Herein, we demonstrated that dasatinib in combination with BMS-754807 inhibited lung cancer cell growth, while induced autophagy as well as cell cycle arrest at the G1 phase. Dasatinib in combination with BMS-754807 suppressed the expression of cell cycle marker proteins, Rb, p-Rb, CDK4, CDK6 and Cyclin D1, and the PI3K/Akt/mTOR signaling pathway. Dasatinib in combination with BMS-754807 induced autophagy in lung cancer cells, evidenced by the upregulation of LC3B II and beclin-1, the downregulation of LC3B I and SQSTM1/p62, and the autophagic flux observed with a confocal fluorescence microscopy. Furthermore, dasatinib (18mg/kg) in combination with BMS-754807 (18mg/kg) inhibited the growth of tumors in NCI-H3255 xenografts without changing the bodyweight. Overall, our results suggest that dasatinib in combination with BMS-754807 inhibits the lung cancer cell proliferation in vitro and tumor growth in vitro, which indicates promising evidence for the application of the drug combination in lung cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call