Abstract

Abstract The ytterbium(III) oxide bromide oxidotellu-rate(IV) Yb3O2Br[TeO3]2 was obtained from a mixture of Yb2O3, YbBr3 and TeO2 in a molar ratio of 2:1:2 along with an excess of KBr as fluxing agent in evacuated fused silica ampoules after 10 days at T = 800 °C and subsequent slow cooling to room temperatures as colorless, plate-shaped single crystals. Its triclinic crystal structure (a = 663.97(5), b = 697.46(5), c = 1080.15(8) pm, α = 105.102(3), β = 90.931(3), γ = 100.034(3)°; Z = 2, space group: P 1 ‾ $‾{1}$ ) displays three crystallographically different Yb3+ cations with coordination numbers of six, seven and eight. Six out of eight distinct oxygen atoms belong to two independent ψ1-tetrahedral [TeO3]2−anions, whereas the other two represent O2− anions in tetrahedral coordination of four Yb3+ cations each, not having any contact to tellurium. Condensed via common vertices and edges, these [OYb4]10+ tetrahedra form cationic layers ∞ 2 ${}_{\infty }{}^{2}$ {[O2Yb3]5+}, which spread out parallel to the (001) plane. Two discrete [TeO3]2− groups and one Br− anion per formula unit take care of their three-dimensional interconnection along [001] and the overall charge balance of Yb3O2Br[TeO3]2. Remarkable interactions between the lone pair of electrons at the Te4+ cations of the ψ1-tetrahedral [TeO3]2− anions and those at the Br− anions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call