Abstract

The Pauli approach to account for the mass-velocity and Darwin relativistic corrections has been applied to the formalism for quantum mechanical molecular calculations that does not assume the Born-Oppenheimer (BO) approximation regarding separability of the electronic and nuclear motions in molecular systems. The corrections are determined using the first order perturbation theory and are derived for the non-BO wave function of a diatomic system expressed in terms of explicitly correlated Gaussian functions with premultipliers in the form of even powers of the internuclear distance. As a numerical example we used calculations of the transition energies for pure vibrational states of the HD(+) ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.