Abstract
Coordination of events leading to differentiation is mediated by the concerted action of multiple signal transduction pathways. In general, the uncoupling of mechanisms linking differentiation to cell cycle exit is a hallmark of cancer, yet the identity and regulation of molecules integrating signal transduction pathways remains largely unknown. One notable exception is DARPP-32 (dopamine and cAMP-regulated neuronal phosphoprotein, molecular mass, 32 kDa), a third messenger that integrates multiple signaling pathways in the brain. Thyroid cells represent an excellent model for understanding the coupling of signal transduction pathways leading to both proliferation and differentiation. The cooperative action of IGF-I and TSH together, but not alone, enable thyroid cells to proliferate while maintaining their differentiated state. How signaling downstream from these molecules is integrated is not known. Here we show that DARPP-32 expression is targeted by TSH and IGF-I in thyrocytes. Significantly, dedifferentiated, tumoral, or Ras-transformed thyrocytes fail to express DARPP-32 whereas short interfering RNA-mediated silencing of DARPP-32 expression in normally differentiated thyroid cells results in loss of differentiation markers such as thyroid transcription factor 1, Pax8, thyroglobulin, and the Na/I symporter. Consistently, DARPP-32 reexpression in ras-transformed cells results in reactivation of the otherwise silent thyroglobulin and thyroperoxidase promoter. Thus, DARPP-32 is critical for the maintenance of thyroid differentiation by TSH and IGF-I, and loss of DARPP-32 expression may be a characteristic of thyroid cancer. Our results also raise the possibility that DARPP-32 may play a similar role in the maintenance of differentiation of a range of other cell types.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.