Abstract

We study the dynamics of two gray solitons in a Bose-Einstein condensate confined by a toroidal trap with a tight confinement in the radial direction. Gross-Pitaevskii simulations show that solitons can be long living objects passing through many collisional processes. We have observed quite different behaviors depending on the soliton velocity. Very slow solitons, obtained by perturbing the stationary solitonic profile, move with a constant angular velocity until they collide elastically and move in the opposite direction without showing any sign of lowering their energy. In this case the density notches are always well separated and the fronts are sharp and straight. Faster solitons present vortices around the notches, which play a central role during the collisions. We have found that in these processes the solitons lose energy, as the outgoing velocity turns out to be larger than the incoming one. To study the dynamics, we model the gray soliton state with a free parameter that is related to the soliton velocity. We further analyze the energy, soliton velocity and turning points in terms of such a free parameter, finding that the main features are in accordance with the infinite one-dimensional system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.