Abstract

Hybrid virtual reality environments allow analysts to choose how much of the screen real estate they want to use for Virtual Reality (VR) immersion, and how much they want to use for displaying different types of 2D data. We present the use-based design and evaluation of an immersive visual analytics application for cosmological data that uses such a 2D/3D hybrid environment. The applications is a first-in-kind immersive instantiation of the Activity-Centered-Design theoretical paradigm, as well as a first documented immersive instantiation of a details-first paradigm based on scientific workflow theory. Based on a rigorous analysis of the user activities and on a details-first paradigm, the application was designed to allow multiple domain experts to interactively analyze visual representations of spatial (3D) and nonspatial (2D) cosmology data pertaining to dark matter formation. These hybrid data are represented at multiple spatiotemporal scales as time-aligned merger trees, pixel-based heatmaps, GPU-accelerated point clouds and geometric primitives, which can further be animated according to simulation data and played back for analysis. We have demonstrated this multi-scale application to several groups of lay users and domain experts, as well as to two senior domain experts from the Adler Planetarium, who have significant experience in immersive environments. Their collective feedback shows that this hybrid, immersive application can assist researchers in the interactive visual analysis of large-scale cosmological simulation data while overcoming navigation limitations of desktop visualizations.

Highlights

  • The Electronic Visualization Laboratory (EVL) at the University of Illinois at Chicago has been at the forefront of Virtual Reality (VR) research since 1992, when it created the first CAVE environment, a projection-based virtual reality system

  • These technologies can be used for Immersive Analytics tasks—deriving insights from data by augmenting the human analysts’ ability to make sense of the large and multifaceted datasets which are common across scientific disciplines

  • Analysts interacting with the immersive 3D world can use a tracked controller, while other members of the team are simultaneously interacting through their laptops or tablets. Running both SAGE and OmegaLib simultaneously allows the analysts to choose how much of the CAVE2 screen real estate they want to use for VR immersion, and how much they want to use for sharing different types of related 2D representations

Read more

Summary

INTRODUCTION

The Electronic Visualization Laboratory (EVL) at the University of Illinois at Chicago has been at the forefront of Virtual Reality (VR) research since 1992, when it created the first CAVE environment, a projection-based virtual reality system. The CAVE2 is a passive hybrid reality environment that can show both 3D immersive representations and 2D representations using a system of large high-resolution tiled LCD displays These technologies can be used for Immersive Analytics tasks—deriving insights from data by augmenting the human analysts’ ability to make sense of the large and multifaceted datasets which are common across scientific disciplines. In one example of such a large, multifaceted dataset facilitated by advancements in high-performance computing, cosmologists are able to model the formation of the universe via n-body simulation, from the Big Bang to the present. These simulations make up a core part of our understanding of the known universe. Last but not least, based on a rigorous analysis of the analyst activities, the application was designed to allow multiple domain experts to interactively analyze visual representations of nonspatial (2D) and immersive spatial (3D) cosmology data pertaining to dark matter formation

RELATED WORK
CAVE2 HYBRID ENVIRONMENT
Domain Problem
Activity-Centered Design
Visual Encodings and Implementation
EVALUATION AND RESULTS
Quantitative Evaluation
Qualitative Evaluation
DISCUSSION AND CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call