Abstract
We show that, under certain circumstances, an optical field in a two-mode squeezed vacuum (TMSV) state can propagate through a lossy atomic medium without degradation or evolution. Moreover, the losses give rise to that state when a different state is initially injected into the medium. Such a situation emerges in a Λ-type atomic system, in which both optical transitions are driven by strong laser fields that are two-photon resonant with the respective signal modes. Then the interactions of the two signal modes with the ground-state atomic coherence interfere destructively, thereby ensuring the preservation of the TMSV with a particular squeezing parameter. This mechanism permits unified interpretation of recent experimental results and predicts new phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.