Abstract

Sensory experience is critical for the formation of neuronal circuits and it is well known that neuronal activity plays a crucial role in the formation and maintenance of synapses. In the vertebrate retina, exposure to different environmental conditions results in structural, physiological, neurochemical and pharmacological changes. Serotoninergic (5HT) amacrine cells of the chicken retina are bistratified interneurons whose primary dendrites descend through the inner nuclear layer (INL) to branch in the inner plexiform layer (IPL) forming two plexi, an outer network, localized to sublamina 1, and an inner network, localized to sublamina 4 and 5 of the IPL. Their development is temporally correlated with the establishment of synapses in the retina and with the emergence of the typical adult electroretinogram. It is unknown, however, which role these cells play in processing visual information and whether visual deprivation modifies their phenotype. Here, we show that, in the chicken, red-light rearing from hatching to postnatal day 12 significantly alters the stratification pattern of 5HT amacrine cells, inhibiting their age-dependent pruning measured with morphometric and densitometric procedures; as well as increasing serotonin immunoreactivity measured as relative optical density. This change in dendritic arborization, accompanied by an increase in serotonin concentration in dark adapted conditions, may decrease visual threshold, thus increasing visual sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call