Abstract
Ocean Drilling Program Legs 127 and 128 in the Japan Sea have revealed the existence of numerous dark-light rhythms of remarkable consistency in sediments of late Miocene, latest Pliocene, and especially Pleistocene age. Light-colored units within these rhythms are massive or bioturbated, consist of diatomaceous clays, silty clays, or nannofossil-rich clays, and are generally poor in organic matter. Dark-colored units are homogeneous, laminated, or thinly bedded and include substantial amounts of biogenic material such as well-preserved diatoms, planktonic foraminifers, calcareous nannofossils, and organic matter (maximum 7.4 wt%). The dark-light rhythms show a similar geometrical pattern on three different scales: First-order rhythms consist of a cluster dominated by dark-colored units followed by a cluster dominated by light-colored units (3-5 m). Spectral analysis of a gray-value time series suggests that the frequencies of the first-order rhythms in sediments of latest Pliocene and Pleistocene age correlate to the obliquity and the eccentricity cycles. The second-order dark-light rhythms include a light and a dark-colored unit (10-160 cm). They were formed in time spans of several hundred to several ten thousand years, with variance centering around 10,500 yr. This frequency may correspond to half the precessional cycle. Third-order rhythms appear as laminated or thinly bedded dark-light couplets (2-15 mm) within the dark-colored units of the second-order rhythms and may represent annual frequencies. In interpreting the rhythms, we have to take into account that (1) the occurrence of the first- and second-order rhythms is not necessarily restricted to glacial or interglacial periods as is shown by preliminary stable-isotope analysis and comparison with the published δ 18 θ record; (2) they appear to be Milankovitch-controlled; and (3) a significant number of the rhythms are sharply bounded. The origin of the dark-light rhythms is probably related to variations in monsoonal activity in the Japan Sea, which show annual frequencies, but also operates in phase with the orbital cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.