Abstract

We generalize the ΛCDM model by introducing a unified EOS to describe the Universe contents modeled as dark viscous fluid, motivated by the fact that a single constant equation of state (EOS) p = -p0 (p0 > 0) reproduces the ΛCDM model exactly. This EOS describes the perfect fluid term, the dissipative effect, and the cosmological constant in a unique framework and the Friedmann equations can be analytically solved. Especially, we find a relation between the EOS parameter and the renormalizable condition of a scalar field. We develop a completely numerical method to perform a χ2 minimization to constrain the parameters in a cosmological model directly from the Friedmann equations, and employ the SNe data with the parameter [Formula: see text] measured from the SDSS data to constrain our model. The result indicates that the dissipative effect is rather small in the late-time Universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.