Abstract

The realization of metamaterials or metasurfaces with simultaneous electric and magnetic response and low loss is generally very challenging at optical frequencies. Traditional approaches using nanoresonators made of noble metals, while suitable for the microwave and terahertz regimes, fail at frequencies above the near-infrared, due to prohibitive high dissipative losses and the breakdown of scaling resulting from the electron mass contribution (kinetic inductance) to the effective reactance of these plasmonic meta-atoms. The alternative route based on Mie resonances of high-index dielectric particles normally leads to structure sizes that tend to break the effective-medium approximation. Here, we propose a subwavelength dark-state-based metasurface, which enables configurable simultaneous electric and magnetic responses with low loss. Proof-of-concept metasurface samples, specifically designed around telecommunication wavelengths (i.e., λ ≈ 1.5 μm), were fabricated and investigated experimentally to val...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.