Abstract

In the present work, we study dark solitons in dynamical lattices with the saturable nonlinearity and compare them to those in lattices with the cubic nonlinearity. This comparison has become especially relevant in light of recent experimental developments in the former context. The stability properties of the fundamental waves, for both onsite and intersite modes, are examined analytically and corroborated by numerical results. Our findings indicate that for both models onsite solutions are stable for sufficiently small values of the coupling between adjacent nodes, while intersite solutions are always unstable. The nature of the instability (which is oscillatory for onsite solutions at large coupling and exponential for inter-site solutions) is probed via the dynamical evolution of unstable solitary waves through appropriately crafted numerical experiments; typically, these computations result in dynamic motion of the originally stationary solitary waves. Another key finding, consistent with recent experimental results, is that the instability growth rate for the saturable nonlinearity is found to be smaller than that of the cubic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.