Abstract

We consider the collision of a dark soliton with an obstacle in a quasi-one-dimensional Bose condensate. We show that in many respects the soliton behaves as an effective classical particle of mass twice the mass of a bare particle, evolving in an effective potential which is a convolution of the actual potential describing the obstacle. Radiative effects beyond this approximation are also taken into account. The emitted waves are shown to form two counterpropagating wave packets, both moving at the speed of sound. We determine, at leading order, the total amount of radiation emitted during the collision and compute the acceleration of the soliton due to the collisional process. It is found that the radiative process is quenched when the velocity of the soliton reaches the velocity of sound in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.