Abstract

The bioavailability of arsenic (As) is influenced by ammonium (NH4+-N) fertilization, but the underlying mechanisms controlling As transformation in soil-rice systems are still not fully understood. The effects of two NH4+-N fertilizers, urea and NH4HCO3, on the transformation of As in a paddy soil with low organic matter content and transfer in rice plants were investigated. Treatments with urea and NH4HCO3 significantly increased arsenite (As(III)) concentration in porewater, bioavailable As in rhizosphere soil, and the relative abundance of the As(V) respiratory reductase gene (arrA) and As(III) methyltransferase gene (arsM). Furthermore, the relative expression of As transporter genes in rice roots, such as OsLsi1, OsLsi2, and OsLsi3, was upregulated, and the translocation efficiency of As(III) from rice roots to brown rice was promoted. Subsequently, As(III) accumulation in brown rice significantly increased. Therefore, attention should be paid to As-contaminated paddy fields with NH4+-N fertilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call